Write down 0,1,2,3,4,5 and put parallel square of each number like 0,1,4,9,16,25, then start to subtract the bigger one to the lower one (1–0),(4–1),(9–4),(16–9) and (25–16) to get 1,3,5,7,9 and again subtract the bigger one to the lower one (3–1),(5–3),(7–5) and (9–7) to get (2,2,2,2). Again we squared each number, at the same time we cubed each number (0,1,8,27,64,125,216) and the … More A note on the Factorial Function
If we square 11, it is very simple put 1(21)(12)get 121 same as square 12 put 1(22)(22) get 144 again for 13 we get 169 and for 14 we get 1 8 16=196 and so on. When we go deep, we find that there is symmetry of two types (2,4,6,8,10,12 ,14,16,18,20 …. Diff is always … More Squaring: A New Way