If we square 11, it is very simple put 1(2*1)(12)get 121 same as square 12 put 1(2*2)(22) get 144 again for 13 we get 169 and for 14 we get 1 8 16=196 and so on.
When we go deep, we find that there is symmetry of two types
(2,4,6,8,10,12 ,14,16,18,20 …. Diff is always 2) &
(1, 4 , 9 ,16,25,36,49,64,81,100 ) diff. is 3 5 7 9 11 13 15 17 19 and diff. of 3 5 7 9 11 always 2, so there is true symmetry .
Up to 19 it is right but at 20 how we can put 1 20 100 just because of symmetry.
- 112 = 1 2 1
- 122 = 1 4 4
- 132 = 1 6 9
- 142 = 1 8 16 = 100 + 80 + 16 = 196
- 152 = 1 10 25 = 100 + 100 + 25 = 225
- 162 = 1 12 36 = 100 + 120 + 36 = 256
- 172 = 1 14 49 = 100 + 140 + 49 = 289
- 182 = 1 16 64 = 100 + 160 + 64 = 324
- 192 = 1 18 81 = 100 + 180 + 81 = 361
- 202 = 1 102 = 1 20 100 = 100 + 200 + 100 = 400
- 212 = 1 112 = 1 22 121 = 100 + 220 + 121 = 441
- 222 = 1 122 = 1 24 144 = 100 + 240 + 144 = 484
- 232 = 1 132 = 1 26 169 = 100 + 260 + 169 = 529
- 242 = 1 142 = 1 28 196 = 100 + 280 + 196 = 576
- 252 = 1 152 = 1 30 225 = 100 + 300 + 225 = 625
- 262 = 1 162 = 1 32 256 = 100 + 320 + 256 = 676
- 272 = 1 172 = 1 34 289 = 100 + 34 + 289 = 729
- 282 = 1 182 = 1 36 324 = 100 + 360 + 324 = 784
- 292 = 1 192 = 1 38 361 = 100 + 380 + 361 = 841
- 302 = 1 202 = 1 40 400 = 100 + 400 + 400 = 900
There is a symmetry, from here I got a method, which is shown as below for 31, 41, 51 and so on.
- 312 = 1 212 = 1 42 (1 11)2 = 1 42 (1 22 121)
= 961 = 121 + 220 + 100
= 441 + 420 + 100 = 961
- 412 = 1 312 = 1 62 (1 21)2 = 162 (1 42) (1 11)2
= 1 62 (1 42) (1 22 121)
= 1 62 (961) = 961 + 620 + 100 = 1681
- 512 = 1 412 = 1 82 (1 31)2 = 1 82 (1 62) (1 21)2
= 1 82 (1 62) (1 42) (1 11)2
= 1 82 (1 62) (1 42) (1 22 121)
= 1 82(1681) = 1681 + 820 + 100 = 2601
- 612 = 1 512 = 1 102 (41)2 = 1 102 (1 82) (1 31)2
= 1 102 (1 82) (1 62) (1 21)2
= 1 102 (1 82) (1 62) (1 42) (1 11)2
= 1 102 (1 82) (1 62) (1 42) (1 22 121)
= 1 102 (2601) = 2601 + 1020 + 100 = 3721
- 712 = 1 612 = 1 122 (1 51)2 = 1 122 (1 102) (41)2
= 1 122 (1 102) (1 82) (1 31)2 = 1 122 (1 102) (1 82) (1 62) (1 21)2
= 1 122 (1 102) (1 82) (1 62) (1 42)(1 11)2
= 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2
= 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121)
= 3721 + 1220 + 100 = 5041
- 812 = 1 712 = 1 142 (1 612) = 1 122 (1 51)2 = 1 122 (1 102) (41)2
= 1 122 (1 102) (1 82) (1 31)2 = 1 122 (1 102) (1 82) (1 62) (1 21)2
= 1 122 (1 102) (1 82) (1 62) (1 42)(1 11)2
= 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2
= 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121)
= 5041 + 1420 + 100 = 6561
- 912 = 1 812 = 1 162(1 712 ) = 1 142 (1 612) = 1 122 (1 51)2
= 1 122 (1 102) (41)2 = 1 122 (1 102) (1 82) (1 31)2
= 1 122 (1 102) (1 82) (1 62) (1 21)2
= 1 122 (1 102) (1 82) (1 62) (1 42)(1 11)2
= 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2
= 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121)
= 6561 + 1620 + 100 = 8281
- 1012 = 1 912 = 1 182(1 812) = 1 162(1 712 ) = 1 142 (1 612) = 1 122 (1 51)2
= 1 122 (1 102) (41)2 = 1 122 (1 102) (1 82) (1 31)2
= 1 122 (1 102) (1 82) (1 62) (1 21)2
= 1 122 (1 102) (1 82) (1 62) (1 42)(1 11)2
= 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2
= 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121)
= 8281 + 1820 + 100 = 10201
[ad#ad-2]